
1Data Structures Department of Computer Science – University of Zakho

Queue



2Data Structures Department of Computer Science – University of Zakho

Queue ADT

 A Queue is a data structure that has two ends:

▪ Elements are added at one end called “rear”. 

▪ And removed from the other end called “front”.

 Insertions and deletions follow First-in First-out (FIFO) scheme (principle).

▪ It means that the element added last will be removed first.



3Data Structures Department of Computer Science – University of Zakho

Queue ADT

Main operations

▪ enqueue(object): Insert element at rear.

▪ object dequeue(): Remove and returns element at front.

 Auxiliary operations

▪ object front(): returns front element without removing it.

▪ integer size(): returns number of elements stored.

▪ boolean isEmpty(): returns whether no elements are stored.



4Data Structures Department of Computer Science – University of Zakho

Applications of Queues

 Direct

▪ Waiting lines.

▪ Access to shared resources.

▪ Hold jobs for a printer.

▪ The most common application is in client-server models

o Multiple clients may be requesting services from one or more servers

o Some clients may have to wait while the servers are busy

o Those clients are placed in a queue and serviced in the order of arrival

 Indirect

▪ Auxiliary data structure for algorithms

▪ Component of other data structures



5Data Structures Department of Computer Science – University of Zakho

Array-based Queue

 Add elements in an array Q of capacity(size) N.

 Two Variables: 

▪ front that points to the beginning of the Queue.

▪ rear that points to the end of the Queue.



6Data Structures Department of Computer Science – University of Zakho

Enqueue and Dequeue Algorithms

Algorithm Enqueue(Element):

if isFull then

throw Full Queue Exception

else 

Q[rear]  element

rear rear + 1

Run time: O(1)

Algorithm Dequeue():

if isEmpty then

throw Empty Queue Exception

else 

item Q[front]

Q[front] Null

front front+1

return item

Run Time: O(1)



8Data Structures Department of Computer Science – University of Zakho

Queue Operations - Example

0 1 2 3 4 5 6 7 8 9

front rear

• Queue Q, N=10

Enqueue (9)

{

if isFull Then

“Queue is Full”

else

Q[rear]=9

rear=rear+1

}

0 1 2 3 4 5 6 7 8 9

9

front rear



9Data Structures Department of Computer Science – University of Zakho

Queue Operations - Example

0 1 2 3 4 5 6 7 8 9

9

front rear

• Queue Q, N=10

Enqueue (3)

{

if isFull Then

“Queue is Full”

else

Q[rear]=3

rear=rear+1

}

0 1 2 3 4 5 6 7 8

3

9

9

front rear



10Data Structures Department of Computer Science – University of Zakho

Queue Operations - Example

0 1 2 3 4 5 6 7 8

3

9

9

front rear

• Queue Q, N=10

Enqueue (5)

{

if isFull Then

“Queue is Full”

else

Q[rear]=5

rear=rear+1

}

5

0 1 2 3 4 5 6 7 8

3

9

9

front rear



11Data Structures Department of Computer Science – University of Zakho

Queue Operations - Example

5

0 1 2 3 4 5 6 7 8

3

9

9

front rear

• Queue Q, N=10

Dequeue ()

{

if isFull Then

“Queue is empty”

else

item=Q[front]

Q[front]=null

front=front+1

return item

}

5

0 1 2 3 4 5 6 7 8

3

9

front rear



12Data Structures Department of Computer Science – University of Zakho

Queue Operations - Example

5

0 1 2 3 4 5 6 7 8

3

9

front rear

• Queue Q, N=10

Dequeue ()

{

if isEmpty Then

“Queue is empty”

else

item=Q[front]

Q[front]=null

front=front+1

return item

}

5

0 1 2 3 4 5 6 7 8 9

front rear



13Data Structures Department of Computer Science – University of Zakho

Queue Operations - Example

5

0 1 2 3 4 5 6 7 8 9

front rear

• Queue Q, N=10

Dequeue ()

{

if isEmpty Then

“Queue is empty”

else

item=Q[front]

Q[front]=null

front=front+1

return item

}

0 1 2 3 4 5 6 7 8 9

front rear



14Data Structures Department of Computer Science – University of Zakho

Queue Operations - Example

• Queue Q, N=10

Enqueue (8)

Enqueue (1)

Enqueue (12)

Enqueue (11)

Enqueue (4)

Enqueue (6)

Enqueue (13)

0 1 2 3 4 5 6 7 8 9

front rear

0 1 2 3 4 5 6 7 8 9

8 1 12 11 4 6 13

front rear



15Data Structures Department of Computer Science – University of Zakho

Queue Operations - Example

• Queue Q, N=10

Now, let’s add one 

more element 7.

0 1 2 3 4 5 6 7 8 9

8 1 12 11 4 6 13

front rear

Enqueue (7)

{

if isFull Then

“Queue is Full”

else

Q[rear]=7

rear=rear+1

}

Once queue becomes full, we can not 

insert the next element even if there is a 

space in front of queue. waste of memory 

in a Queue.

What is the problem?



16Data Structures Department of Computer Science – University of Zakho

Circular Queue

To Solve the waste memory in Queue.



17Data Structures Department of Computer Science – University of Zakho

Circular Queue

- Instead of viewing the array on the range 0, …, 15, consider the 
indices being cyclic:

…, 15, 0, 1, …, 15, 0, 1, …, 15, 0, 1, …

This is referred to as a circular array.

- view Q as a "circular array" that goes from Q [0] to Q [N-1 ] and then 
immediately back to Q [0] again.

front
rear

rear

front



18Data Structures Department of Computer Science – University of Zakho

Enqueue and Dequeue Algorithms

Algorithm Enqueue(Element):

if isFull then

throw Full Queue Exception

else 

Q[rear]  element

rear (rear + 1) mod N

Run time: O(1)

Algorithm Dequeue():

if isEmpty then

throw Empty Queue Exception

else 

item Q[front]

Q[front] Null

front (front+1) mod N

return item

Run Time: O(1)



19Data Structures Department of Computer Science – University of Zakho

CQueue Operations - Example

• Queue Q, N=10
0 1 2 3 4 5 6 7 8 9

8 1 12 11 4 6

front rear

Enqueue (13)

{

if isFull Then

“Queue is Full”

else

Q[rear]=13

rear=(rear+1) mod N

} 0 1 2 3 4 5 6 7 8 9

8 1 12 11 4 6 13

frontrear



20Data Structures Department of Computer Science – University of Zakho

CQueue Operations - Example

• Queue Q, N=10

Enqueue (7)

{

if isFull Then

“Queue is Full”

else

Q[rear]=7

rear=(rear+1) mod N

}

0 1 2 3 4 5 6 7 8 9

8 1 12 11 4 6 13

frontrear

0 1 2 3 4 5 6 7 8 9

8 1 12 11 4 6 137

frontrear



21Data Structures Department of Computer Science – University of Zakho

CQueue Operations - Example

• Queue Q, N=10

Dequeue ()

{

if isEmpty Then

“Queue is Empty”

else

item=Q[front]

Q[front]=Null

front=(front+1) mod N

}

0 1 2 3 4 5 6 7 8 9

8 1 12 11 4 6 13

frontrear

0 1 2 3 4 5 6 7 8 9

1 12 11 4 6 137

frontrear



22Data Structures Department of Computer Science – University of Zakho

Queue Implementation
Array: We will use this first.

Linked Lists: Later to be implemented with list.



23Data Structures Department of Computer Science – University of Zakho

Lab Assignment
 Implement the Queue in C++ using OOP.



24Data Structures Department of Computer Science – University of Zakho

Exercises

 Describe in pseudo-code an algorithm for reversing a queue Q. To 

access the queue, you are only allowed to use the methods of a 

queue ADT. Hint: Consider using an auxiliary data structure.



25Data Structures Department of Computer Science – University of Zakho

Exercises

 A linear list of elements in which deletion can be done from one end 
(front) and insertion can take place only at the other end (rear) is 
known as a?

a) Queue.

b) Stack.

c) Tree.

d) Linked list.

 A queue follows

a) FIFO (First In First Out) principle.

b) LIFO (Last In First Out) principle.

c) Ordered array.

d) Linear tree.


