\\.
=

=\t \,\.\ N
—— AN\

A

. //maﬂﬂ .“\\\\\\\\ I m
..,,4..“‘\....:.« \ ,“V%.,ﬂ i i.\\..iﬁ./:. 4
) N

P

[et~ h i
hle] /../\(’l‘ Y % / \//

Queue

Department of Computer Science — University of Zakho

Data Structures

Queue ADT

» A Queue is a data structure that has two ends:
= Flements are added at one end called “rear’.
= And removed from the other end called “front".

Insertions and deletions follow First-in First-out (FIFO) scheme (principle).

= [t means that the element added last will be removed first.

Py

Insert
(Enqueue)

Remove
(Dequeue) front rear

Data Structures Department of Computer Science — University of Zakho

Queue ADT

= Main operations
= enqueue(object): Insert element at rear.
= object dequeue(): Remove and returns element at front.
» Auxiliary operations
= object front(): refurns front element without removing it.
= infeger size(): returns number of elements stored.
= boolean isEmpty(): returns whether no elements are stored.

Data Structures Department of Computer Science — University of Zakho

Applications of Queues

®» Direct
= Waiting lines.
= Access to shared resources.
= Hold jobs for a printer.
= The most common application is in client-server models
o Multiple clients may be requesting services from one or more servers
o Some clients may have to wait while the servers are busy
o Those clients are placed in a queue and serviced in the order of arrival

» |ndirect
= Auxiliary data structure for algorithms
= Component of other data structures

Data Structures Department of Computer Science — University of Zakho

Array-based Queue

» Add elementsin an array Q of capacity(size) N.
» Two Variables:

= front that points to the beginning of the Queue.

= rear that points to the end of the Queue.

Py

Insert
(Enqueue)

Remove
(Dequeue) front rear

Data Structures Department of Computer Science — University of Zakho

Engueue and Dequeue Algorithms

Algorithm Enqueue(Element): Algorithm Dequeue():
if isFull then If isEmpty then
throw Full Queue Exception throw Empty Queue Exception
else else
Q[rear] « element item <« Q[front]
rear < rear + 1 Q[front] «— Null
front « front+1
Run time: O(1) return fem

Run Time: O(1)

Data Structures Department of Computer Science — University of Zakho

Queue Operations - Example

0 1 2 3 4
e Queuve Q, N=10 ‘ ‘ | > ‘ é ‘ 7 ‘ 8 ‘
Enqueuve (9) front rear
if isFull Then) : , X .
“Queue is Full” > é 7__8
else 9 ‘ ‘ ‘ ‘ ‘ ‘ ‘
Q[rear]=9 T T
rear=rear+1
} front rear

Data Structures Department of Computer Science — University of Zakho

Queue Operations - Example

« Queue Q, N=10

I 1

Enqueuve (3) front rear
{
if isFull Then
“Queue is Full” 0 ! 2 3 4 S5 6 7 8
else o [s] | [T T]
Q[rear]=3 T
rear=rear+] T
} front rear

Data Structures Department of Computer Science — University of Zakho

Queue Operations - Example

0 1 2 3 4 9
« Queuve Q, N=10 > é 7/ 8
AEN [T T[]
Enqueue (5) front rear
if isFull Then) : , X . .
“Quevue is Full” > é 7__8
else 9 ‘ 3 ‘ 3 ‘ ‘ ‘ ‘ ‘
Q[rear]=5 T T
rear=rear+1
} front rear

Data Structures Department of Computer Science — University of Zakho 10

Queue Operations - Example

. Queve Q. N=10 0 1 2 3 4 5 6 7 8 9
o [s [5] [[[]
Dequeue () T T
{ front rear
~ if isFull Then
“Queue is empty”
else 0 1 2 3 4 5 6 7 8 9
item=Q][front] ‘ 3 ‘ 5 ‘ ‘ ‘ ‘ ‘
Q[front]=null
front=front+1 T T
return item front rear

Data Structures Department of Computer Science — University of Zakho 11

Queue Operations - Example

. Queve Q. N=10 0 1 2 3 4 5 6 7 8 9
ENER [T T 1
Dequeue () T T
{ front rear
~ if isEmpty Then
“Queue is empty”
else 0 1 2 3 4 5 6 7 8 9
item=Q][front] ‘ ‘ 5 ‘ ‘ ‘ ‘ ‘
Q[front]=null
front=front+1 T T
return item front rear

Data Structures Department of Computer Science — University of Zakho 12

Queue Operations - Example

. Queue Q N=10 0 1 2 3 4 5 6 7 8 9
| [5] [[T 1
Dequevue () T T
{ front rear
~ if isEmpty Then
“Queue is empty”
else 0 1 2 3 4 5 6 7 8 9
item=Q][front] ‘ ‘ ‘ ‘ ‘ ‘ ‘
Q[front]=null
front=front+1 T T
return item front rear

Data Structures Department of Computer Science — University of Zakho 13

Queue Operations - Example

0 1 2 3 4 5 6 7 8 9
- Queve Q, N=10 ‘ ‘ ‘ ‘ ‘ ‘ ‘
Enqueuve (8) T T
Enqueuve (1) front rear

- Enqueve (12)
:nqueue g;) o 1 2 3 4 5 & 7 8 9
nqueve

Engueue (6) ‘ ‘ ‘ ° 1 12 ‘ 1 ‘ : ‘ ° ‘ 2
Enqueue (13) T T

front rear

Data Structures Department of Computer Science — University of Zakho 14

Queue Operations - Example

« Queue Q, N=10

Now, let’s add one
more element?.

- Enqueve (7)

{
if isFull Then
“Quevue is Full”
else
Q[rear]=7
rear=rear+1
}

Data Structures

What is the problem?

Once queue becomes full, we can not
insert the next element even if there is a
space in front of queve. waste of memory
in a Queve.

Department of Computer Science — University of Zakho

rear

15

+ >>> Circular Queue

To Solve the waste memory in Queue.

Circular Queuve

- Instead of viewing the array on the range O, ..., 15, consider the
indices being cyclic:

....,15,0,1,...,15,0,1,...,15,0, 1, ...
This is referred to as a circular array.

- view Q as a "circular array" that goes from Q [0] to Q [N-1] and then rear
immediately back to Q [0] again.

0O 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15

rear
front

Data Structures Department of Computer Science — University of Zakho 17

Engueue and Dequeue Algorithms

Algorithm Enqueue(Element): Algorithm Dequeue():
if isFull then If isEmpty then
throw Full Queue Exception throw Empty Queue Exception
else else
Q[rear] « element item <« Q[front]
rear <« (rear + 1) mod N Q[front] « Null
front « (front+1) mod N
Run time: O(1) return fem

Run Time: O(1)

Data Structures Department of Computer Science — University of Zakho

CQueue Operations - Example

0 1 2 3 4 5 6 9
 Queue Q, N=10 ‘ ‘ ‘
8 1 12 ‘ 11 ‘
Enqueve (13)
if iSFU" Then froni- reqr
“Queve is Full”
else
Q[rear]=13
rear=(rear+1) mod N
0 1 2 3 & 5 6 9
‘ ‘ ‘ 8 1 12 ‘ 11 ‘ 13
rear front
Data Structures Department of Computer Science — University of Zakho 19

CQueue Operations - Example

0 1 2 3 5 3 7 8 9
. . N=10
Queue Q ‘ ‘ ‘8 12‘11‘4‘6‘13
Enqueve (7) T T
{ . rear front
if isFull Then
“Quevue is Full”
else
Q[rear]=7
rear=(rear+1) mod N
\ 0 1 2 3 4 5 3 7 8 9
7T [[s 1 [|n] s
rear front

Data Structures Department of Computer Science — University of Zakho

CQueue Operations - Example

0 1 2 3 4 5 6 7 8 9
. , N=10
aueve s T e[[n[a]e]mm
Dequevue ()
: | |
if isEmpty Then rear front
| “Queve is Empty”
else
item=Q[front]
Q[front]=Null
front=(front+1) mod N
} 0 1 2 3 4 5 6 7 8 9
7T [| [[wn]e] 6]
rear front

Data Structures Department of Computer Science — University of Zakho

" Queue Implementation

» Array: We will use this first.
®» Linked Lists: Later to be implemented with list.

+ >>) Lab Assignment

» |mplement the Queue in C++ using OOP.

Exercises

» Describe in pseudo-code an algorithm for reversing a queue Q. To
access the queue, you are only allowed to use the methods of a
gueue ADT. Hint: Consider using an auxiliary data structure.

Data Structures Department of Computer Science — University of Zakho

24

Exercises

» A |inear list of elements in which deletion can be done from one end
(front) and insertion can take place only at the other end (rear) is
known as a¢

a) Queue.
b) Stack.
c) Tree.
d) Linked list.
» A queue follows
a) FIFO (First In First Out) principle.
b) LIFO (Last In First Out) principle.
c) Ordered array.
d) Linear tree.

Data Structures Department of Computer Science — University of Zakho

25

